Monday, July 16, 2012

H. Sc Result 2012

H. Sc Result 2012
CLick Here

Read more...

Sunday, July 15, 2012

Hair Style

Read more...

Hair Style


Read more...

Thursday, June 14, 2012

Food

Food is any substance consumed to provide nutritional support for the body. It is usually of plant or animal origin, and contains essential nutrients, such as carbohydrates, fats, proteins, vitamins, or minerals. The substance is ingested by an organism and assimilated by the organism's cells in an effort to produce energy, maintain life, or stimulate growth.

Historically, people secured food through two methods: hunting and gathering, and agriculture. Today, most of the food energy consumed by the world population is supplied by the food industry.

Food safety and food security are monitored by agencies like the International Association for Food Protection, World Resources Institute, World Food Programme, Food and Agriculture Organization, and International Food Information Council. They address issues such as sustainability, biological diversity, climate change, nutritional economics, population growth, water supply, and access to food.

The right to food is a human right derived from the International Covenant on Economic, Social and Cultural Rights (ICESCR), recognizing the "right to an adequate standard of living, including adequate food", as well as the "fundamental right to be free from hunger

Food sources


Almost all foods are of plant or animal origin. Cereal grain is a staple food that provides more food energy worldwide than any other type of crop. Maize, wheat, and rice - in all of their varieties - account for 87% of all grain production worldwide.
Other foods not from animal or plant sources include various edible fungi, especially mushrooms. Fungi and ambient bacteria are used in the preparation of fermented and pickled foods like leavened bread, alcoholic drinks, cheese, pickles, kombucha, and yogurt. Another example is blue-green algae such as Spirulina. Inorganic substances such as baking soda and cream of tartar are also used to chemically alter an ingredient.
Many plants or plant parts are eaten as food. There are around 2,000 plant species which are cultivated for food, and many have several distinct cultivars.
Seeds of plants are a good source of food for animals, including humans, because they contain the nutrients necessary for the plant's initial growth, including many healthful fats, such as Omega fats. In fact, the majority of food consumed by human beings are seed-based foods. Edible seeds include cereals (maize, wheat, rice, et cetera), legumes (beans, peas, lentils, et cetera), and nuts. Oilseeds are often pressed to produce rich oils - sunflower, flaxseed, rapeseed (including canola oil), sesame, et cetera.
Seeds are typically high in unsaturated fats and, in moderation, are considered a health food, although not all seeds are edible. Large seeds, such as those from a lemon, pose a choking hazard, while seeds from apples and cherries contain a poison (cyanide).

Fruits are the ripened ovaries of plants, including the seeds within. Many plants have evolved fruits that are attractive as a food source to animals, so that animals will eat the fruits and excrete the seeds some distance away. Fruits, therefore, make up a significant part of the diets of most cultures. Some botanical fruits, such as tomatoes, pumpkins, and eggplants, are eaten as vegetables. (For more information, see list of fruits.)

Vegetables are a second type of plant matter that is commonly eaten as food. These include root vegetables (potatoes and carrots), bulbs (onion family), leaf vegetables (spinach and lettuce), stem vegetables (bamboo shoots and asparagus), and inflorescence vegetables (globe artichokes and broccoli and other vegetables such as cabbage or cauliflower. .
Animals

 Various raw meats
Main articles: Animal source foods and Food chain



Animals are used as food either directly or indirectly by the products they produce. Meat is an example of a direct product taken from an animal, which comes from muscle systems or from organs. Food products produced by animals include milk produced by mammary glands, which in many cultures is drunk or processed into dairy products (cheese, butter, et cetera). In addition, birds and other animals lay eggs, which are often eaten, and bees produce honey, a reduced nectar from flowers, which is a popular sweetener in many cultures. Some cultures consume blood, sometimes in the form of blood sausage, as a thickener for sauces, or in a cured, salted form for times of food scarcity, and others use blood in stews such as civet.
Some cultures and people do not consume meat or animal food products for cultural, dietary, health, ethical, or ideological reasons. Vegetarians do not consume meat. Vegans do not consume any foods that are or contain ingredients from an animal source.

Read more...

Saturday, May 12, 2012

ASP.NET tutorial      
ASP.NET Creating a Simple Event Calendar for ASP.NET Tutorial
What is ASP.NET?
ASP.NET is a Web application framework developed and marketed by Microsoft to allow programmers to build dynamic Web sites, Web applications and Web services. It was first released in January 2002 with version 1.0 of the .NET Framework, and is the successor to Microsoft's Active Server Pages (ASP) technology. ASP.NET is built on the Common Language Runtime (CLR), allowing programmers to write ASP.NET code using any supported .NET language. The ASP.NET SOAP extension framework allows ASP.NET components to process SOAP messages.

History

After the release of Internet Information Services 4.0 in 1997, Microsoft began researching possibilities for a new Web application model that would solve common complaints about ASP, especially with regard to separation of presentation and content and being able to write "clean" code.[1] Mark Anders, a manager on the IIS team, and Scott Guthrie, who had joined Microsoft in 1997 after graduating from Duke University, were tasked with determining what that model would look like. The initial design was developed over the course of two months by Anders and Guthrie, and Guthrie coded the initial prototypes during the Fall of 1997.[2]

The initial prototype was called "XSP"; Guthrie explained in a 2007 interview that, "People would always ask what the X stood for. At the time it really didn't stand for anything. XML started with that; XSLT started with that. Everything cool seemed to start with an X, so that's what we originally named it."[1] The initial prototype of XSP was done using Java,[3] but it was soon decided to build the new platform on top of the Common Language Runtime (CLR), as it offered an object-oriented programming environment, garbage collection and other features that were seen as desirable features that Microsoft's Component Object Model platform did not support. Guthrie described this decision as a "huge risk", as the success of their new Web development platform would be tied to the success of the CLR, which, like XSP, was still in the early stages of development, so much so that the XSP team was the first team at Microsoft to target the CLR.

With the move to the Common Language Runtime, XSP was re-implemented in C# (known internally as "Project Cool" but kept secret from the public), and the name changed to ASP+, as by this point the new platform was seen as being the successor to Active Server Pages, and the intention was to provide an easy migration path for ASP developers.[4]

Mark Anders first demonstrated ASP+ at the ASP Connections conference in Phoenix, Arizona on May 2, 2000. Demonstrations to the wide public and initial beta release of ASP+ (and the rest of the .NET Framework) came at the 2000 Professional Developers Conference on July 11, 2000 in Orlando, Florida. During Bill Gates' keynote presentation, Fujitsu demonstrated ASP+ being used in conjunction with COBOL,[5] and support for a variety of other languages was announced, including Microsoft's new Visual Basic .NET and C# languages, as well as Python and Perl support by way of interoperability tools created by ActiveState.[6]

Once the ".NET" branding was decided on in the second half of 2000, it was decided to rename ASP+ to ASP.NET. Mark Anders explained on an appearance on The MSDN Show that year that, "The .NET initiative is really about a number of factors, it's about delivering software as a link building service, it's about XML and Web services and really enhancing the Internet in terms of what it can do ... we really wanted to bring its name more in line with the rest of the platform pieces that make up the .NET framework."[4]

After four years of development, and a series of beta releases in 2000 and 2001, ASP.NET 1.0 was released on January 5, 2002 as part of version 1.0 of the .NET Framework. Even prior to the release, dozens of books had been written about ASP.NET,[7] and Microsoft promoted it heavily as part of its platform for Web services. Guthrie became the product unit manager for ASP.NET, and development continued apace, with version 1.1 being released on April 24, 2003 as a part of Windows Server 2003. This release focused on improving ASP.NET's support for mobile devices.

Pages

ASP.NET Web pages, known officially as Web Forms,[8] are the main building block for application development.[9] Web forms are contained in files with an ".aspx" extension; these files typically contain static (X)HTML markup, as well as markup defining server-side Web Controls and User Controls where the developers place all the required static and dynamic content for the Web page. Additionally, dynamic code which runs on the server can be placed in a page within a block <% -- dynamic code -- %>, which is similar to other Web development technologies such as PHP, JSP, and ASP. With ASP.NET Framework 2.0, Microsoft introduced a new code-behind model which allows static text to remain on the .aspx page, while dynamic code remains in an .aspx.vb or .aspx.cs or .aspx.fs file (depending on the programming language used).[10]

Directives

A directive is special instructions on how ASP.NET should process the page.[11] The most common directive is <%@ Page %> which can specify many attributes used by the ASP.NET page parser and compiler.
[edit]
Examples
[edit]
Inline code
<%@ Page Language="C#" %>
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">




Sample page






The current time is:





The above page renders with the Text "The current time is: " and the Text is set with the current time, upon render.
[edit]
Code-behind solutions
<%@ Page Language="C#" CodeFile="SampleCodeBehind.aspx.cs" Inherits="Website.SampleCodeBehind"
AutoEventWireup="true" %>

The above tag is placed at the beginning of the ASPX file. The CodeFile property of the @ Page directive specifies the file (.cs or .vb or .fs) acting as the code-behind while the Inherits property specifies the Class from which the Page is derived. In this example, the @ Page directive is included in SampleCodeBehind.aspx, then SampleCodeBehind.aspx.cs acts as the code-behind for this page:
using System;
namespace Website
{
public partial class SampleCodeBehind : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
Response.Write("Hello, world");
}
}
}
Imports System
Namespace Website
Public Partial Class SampleCodeBehind
Inherits System.Web.UI.Page
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
Response.Write("Hello, world")
End Sub
End Class
End Namespace

In this case, the Page_Load() method is called every time the ASPX page is requested. The programmer can implement event handlers at several stages of the page execution process to perform processing.

User controls

User controls are encapsulations of sections of pages which are registered and used as controls in ASP.NET. User controls are created as ASCX markup files. These files usually contain static (X)HTML markup, as well as markup defining server-side Web controls. These are the locations where the developer can place the required static and dynamic content. A user control is compiled when its containing page is requested and is stored in memory for subsequent requests. User controls have their own events which are handled during the life of ASP.NET requests. An event bubbling mechanism provides the ability to pass an event fired by a user control up to its containing page. Unlike an ASP.NET page, a user control cannot be requested independently; one of its containing pages is requested instead.

Custom controls

Programmers can also build custom controls for ASP.NET applications. Unlike user controls, these controls do not have an ASCX markup file, having all their code compiled into a dynamic link library (DLL) file. Such custom controls can be used across multiple Web applications and Visual Studio projects.

Rendering technique

ASP.NET uses a visited composites rendering technique. During compilation, the template (.aspx) file is compiled into initialization code which builds a control tree (the composite) representing the original template. Literal text goes into instances of the Literal control class, and server controls are represented by instances of a specific control class. The initialization code is combined with user-written code (usually by the assembly of multiple partial classes) and results in a class specific for the page. The page doubles as the root of the control tree.

Actual requests for the page are processed through a number of steps. First, during the initialization steps, an instance of the page class is created and the initialization code is executed. This produces the initial control tree which is now typically manipulated by the methods of the page in the following steps. As each node in the tree is a control represented as an instance of a class, the code may change the tree structure as well as manipulate the properties/methods of the individual nodes. Finally, during the rendering step a visitor is used to visit every node in the tree, asking each node to render itself using the methods of the visitor. The resulting HTML output is sent to the client.

After the request has been processed, the instance of the page class is discarded and with it the entire control tree. This is a source of confusion among novice ASP.NET programmers who rely on class instance members that are lost with every page request/response cycle.

State management

ASP.NET applications are hosted by a Web server and are accessed using the stateless HTTP protocol. As such, if an application uses stateful interaction, it has to implement state management on its own. ASP.NET provides various functions for state management. Conceptually, Microsoft treats "state" as GUI state. Problems may arise if an application needs to keep track of "data state"; for example, a finite-state machine which may be in a transient state between requests (lazy evaluation) or which takes a long time to initialize. State management in ASP.NET pages with authentication can make Web scraping difficult or impossible.

Application

Application state is held by a collection of shared user-defined variables. These are set and initialized when the Application_OnStart event fires on the loading of the first instance of the application and are available until the last instance exits. Application state variables are accessed using the Applications collection, which provides a wrapper for the application state. Application state variables are identified by name.[12]

Session state

Server-side session state is held by a collection of user-defined session variables that are persistent during a user session. These variables, accessed using the Session collection, are unique to each session instance. The variables can be set to be automatically destroyed after a defined time of inactivity even if the session does not end. Client-side user session is maintained by either a cookie or by encoding the session ID in the URL itself.[12]

ASP.NET supports three modes of persistence for server-side session variables:[12]
In-Process Mode
The session variables are maintained within the ASP.NET process. This is the fastest way; however, in this mode the variables are destroyed when the ASP.NET process is recycled or shut down.
ASPState Mode
ASP.NET runs a separate Windows service that maintains the state variables. Because state management happens outside the ASP.NET process, and because the ASP.NET engine accesses data using .NET Remoting, ASPState is slower than In-Process. This mode allows an ASP.NET application to be load-balanced and scaled across multiple servers. Because the state management service runs independently of ASP.NET, the session variables can persist across ASP.NET process shutdowns. However, since session state server runs as one instance, it is still one point of failure for session state. The session-state service cannot be load-balanced, and there are restrictions on types that can be stored in a session variable.
SqlServer Mode
State variables are stored in a database, allowing session variables to be persisted across ASP.NET process shutdowns. The main advantage of this mode is that it allows the application to balance load on a server cluster, sharing sessions between servers. This is the slowest method of session state management in ASP.NET.

View state

View state refers to the page-level state management mechanism, utilized by the HTML pages emitted by ASP.NET applications to maintain the state of the Web form controls and widgets. The state of the controls is encoded and sent to the server at every form submission in a hidden field known as __VIEWSTATE. The server sends back the variable so that when the page is re-rendered, the controls render at their last state. At the server side, the application may change the viewstate, if the processing requires a change of state of any control. The states of individual controls are decoded at the server, and are available for use in ASP.NET pages using the ViewState collection.[13] [14]

The main use for this is to preserve form information across postbacks. View state is turned on by default and normally serializes the data in every control on the page regardless of whether it is actually used during a postback. This behavior can (and should) be modified, however, as View state can be disabled on a per-control, per-page, or server-wide basis.

Developers need to be wary of storing sensitive or private information in the View state of a page or control, as the base64 string containing the view state data can easily be de-serialized. By default, View state does not encrypt the __VIEWSTATE value. Encryption can be enabled on a server-wide (and server-specific) basis, allowing for a certain level of security to be maintained.[15]

Server-side caching

ASP.NET offers a "Cache" object that is shared across the application and can also be used to store various objects. The "Cache" object holds the data only for a specified amount of time and is automatically cleaned after the session time-limit elapses.

Other

Other means of state management that are supported by ASP.NET are cookies, caching, and using the query string.

Template engine

When first released, ASP.NET lacked a template engine. Because the .NET Framework is object-oriented and allows for inheritance, many developers would define a new base class that inherits from "System.Web.UI.Page", write methods there that render HTML, and then make the pages in their application inherit from this new class. While this allows for common elements to be reused across a site, it adds complexity and mixes source code with markup. Furthermore, this method can only be visually tested by running the application - not while designing it. Other developers have used include files and other tricks to avoid having to implement the same navigation and other elements in every page.

ASP.NET 2.0 introduced the concept of "master pages", which allow for template-based page development. A Web application can have one or more master pages, which, beginning with ASP.NET 2.0, can be nested.[16] Master templates have place-holder controls, called ContentPlaceHolders to denote where the dynamic content goes, as well as HTML and JavaScript shared across child pages.

Child pages use those ContentPlaceHolder controls, which must be mapped to the place-holder of the master page that the content page is populating. The rest of the page is defined by the shared parts of the master page, much like a mail merge in a word processor. All markup and server controls in the content page must be placed within the ContentPlaceHolder control.

When a request is made for a content page, ASP.NET merges the output of the content page with the output of the master page, and sends the output to the user.

The master page remains fully accessible to the content page. This means that the content page may still manipulate headers, change title, configure caching etc. If the master page exposes public properties or methods (e.g. for setting copyright notices) the content page can use these as well.

Directory structure

In general, the ASP.NET directory structure can be determined by the developer's preferences. Apart from a few reserved directory names, the site can span any number of directories. The structure is typically reflected directly in the URLs. Although ASP.NET provides means for intercepting the request at any point during processing, the developer is not forced to funnel requests through a central application or front controller.

The special directory names (from ASP.NET 2.0 on) are:[19]
App_Code
This is the "raw code" directory. The ASP.NET server automatically compiles files (and subdirectories) in this folder into an assembly which is accessible in the code of every page of the site. App_Code will typically be used for data access abstraction code, model code and business code. Also any site-specific http handlers and modules and Web service implementation go in this directory. As an alternative to using App_Code the developer may opt to provide a separate assembly with precompiled code.
App_Data
The App_Data ASP.NET Directory is the default directory for any database used by the ASP.NET Website. These databases might include Access (mdb) files or SQL Server (mdf) files. The App_Data is the only directory with Write Access enabled for the ASP.NET web application.:[20]
App_LocalResources
E.g. a file called CheckOut.aspx.fr-FR.resx holds localized resources for the French version of the CheckOut.aspx page. When the UI culture is set to French, ASP.NET will automatically find and use this file for localization.
App_GlobalResources
Holds resx files with localized resources available to every page of the site. This is where the ASP.NET developer will typically store localized messages etc. which are used on more than one page.
App_Themes
Adds a folder that holds files related to themes which is a new ASP.NET feature that helps ensure a consistent appearance throughout a Web site and makes it easier to change the Web site’s appearance when necessary.
App_WebReferences
holds discovery files and WSDL files for references to Web services to be consumed in the site.
Bin
Contains compiled code (.dll files) for controls, components, or other code that you want to reference in your application. Any classes represented by code in the Bin folder are automatically referenced in your application.
[edit]
Performance

ASP.NET aims for performance benefits over other script-based technologies (including Classic ASP) by compiling the server-side code to one or more DLL files on the Web server.[21] This compilation happens automatically the first time a page is requested (which means the developer need not perform a separate compilation step for pages). This feature provides the ease of development offered by scripting languages with the performance benefits of a compiled binary. However, the compilation might cause a noticeable but short delay to the Web user when the newly-edited page is first requested from the Web server, but will not again unless the page requested is updated further.

The ASPX and other resource files are placed in a virtual host on an Internet Information Services server (or other compatible ASP.NET servers; see Other implementations, below). The first time a client requests a page, the .NET Framework parses and compiles the file(s) into a .NET assembly and sends the response; subsequent requests are served from the DLL files. By default ASP.NET will compile the entire site in batches of 1000 files upon first request. If the compilation delay is causing problems, the batch size or the compilation strategy may be tweaked.

Developers can also choose to pre-compile their "codebehind" files before deployment, using MS Visual Studio, eliminating the need for just-in-time compilation in a production environment. This also eliminates the need of having the source code on the Web server. It also supports pre-compile text.
[edit]
Extension

Microsoft has released some extension frameworks that plug into ASP.NET and extend its functionality. Some of them are:
ASP.NET AJAX
An extension with both client-side as well as server-side components for writing ASP.NET pages that incorporate AJAX functionality.
ASP.NET MVC Framework
An extension to author ASP.NET pages using the MVC architecture.
[edit]
ASP.NET compared with ASP classic

ASP.NET simplifies developers' transition from Windows application development to Web development by offering the ability to build pages composed of controls similar to a Windows user interface. A Web control, such as a button or label, functions in very much the same way as its Windows counterparts: code can assign its properties and respond to its events. Controls know how to render themselves: whereas Windows controls draw themselves to the screen, Web controls produce segments of HTML and JavaScript which form parts of the resulting page sent to the end-user's browser.

ASP.NET encourages the programmer to develop applications using an event-driven GUI model, rather than in conventional Web-scripting environments like ASP and PHP. The framework combines existing technologies such as JavaScript with internal components like "ViewState" to bring persistent (inter-request) state to the inherently stateless Web environment.

Other differences compared to ASP classic are:
Compiled code means applications run faster with more design-time errors trapped at the development stage.
Significantly improved run-time error handling, making use of exception handling using try-catch blocks.
Similar metaphors to Microsoft Windows applications such as controls and events.
An extensive set of controls and class libraries allows the rapid building of applications, plus user-defined controls allow commonly-used Web template, such as menus. Layout of these controls on a page is easier because most of it can be done visually in most editors.
ASP.NET uses the multi-language abilities of the .NET Common Language Runtime, allowing Web pages to be coded in VB.NET, C#, J#, Delphi.NET, Chrome, etc.
Ability to cache the whole page or just parts of it to improve performance.
Ability to use the code-behind development model to separate business logic from presentation.
Ability to use true object-oriented design for programming pages and controls
If an ASP.NET application leaks memory, the ASP.NET runtime unloads the AppDomain hosting the erring application and reloads the application in a new AppDomain.
Session state in ASP.NET can be saved in a Microsoft SQL Server database or in a separate process running on the same machine as the Web server or on a different machine. That way session values are not lost when the Web server is reset or the ASP.NET worker process is recycled.
Versions of ASP.NET prior to 2.0 were criticized for their lack of standards compliance. The generated HTML and JavaScript sent to the client browser would not always validate against W3C/ECMA standards. In addition, the framework's browser detection feature sometimes incorrectly identified Web browsers other than Microsoft's own Internet Explorer as "downlevel" and returned HTML/JavaScript to these clients with some of the features removed, or sometimes crippled or broken. In version 2.0 however, all controls generate valid HTML 4.0, XHTML 1.0 (the default) or XHTML 1.1 output, depending on the site configuration. Detection of standards-compliant Web browsers is more robust and support for Cascading Style Sheets is more extensive.
Web Server Controls: these are controls introduced by ASP.NET for providing the UI for the Web form. These controls are state managed controls and are WYSIWYG controls.

Read more...

  © Blogger templates ProBlogger Template by Ourblogtemplates.com 2008 | Sorpotel Recipe

Back to TOP